If it's not what You are looking for type in the equation solver your own equation and let us solve it.
120x^2-20x-75=0
a = 120; b = -20; c = -75;
Δ = b2-4ac
Δ = -202-4·120·(-75)
Δ = 36400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{36400}=\sqrt{400*91}=\sqrt{400}*\sqrt{91}=20\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{91}}{2*120}=\frac{20-20\sqrt{91}}{240} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{91}}{2*120}=\frac{20+20\sqrt{91}}{240} $
| x+3x=3000 | | x/2-5/3=1 | | x+2x+4x+8x+16x+32x+64x+128x=360 | | 0.841=((0.396*x)/9.7)+((-0.0052*(x)^3)/(9.7^3)) | | x+2x+4x+8x+16x+32x+64x=360 | | x+2x+4x+8x+16x+32x=360 | | x+2x+4x+8x+16x=360 | | x+2x+4x+8x=360 | | -2(5+6c+16=-90 | | 2x-29=5x+20 | | 3x÷2-x÷4=1÷4 | | 7x=651 | | 7x=615 | | 2x=688 | | -4x+3x=5 | | 8x=576 | | 3(y+3)-10=2y+1 | | 11x=576 | | 6n=9=57 | | 4b+3/3=b | | 3x=255 | | 6n-3=17 | | 4s3+15s2+16s+6=0 | | 3x=393 | | (4x)2-3=37 | | 3x+12=10-2x | | 7/12a=3/12 | | -8r+(r+1)^6=1 | | (46/20x)+1.25=0 | | 3(y+6)=2y+10 | | 46/20x+1.25=0 | | x=7,x^2-4x+7 |